学术动态

10月9日计算科学报告--Computing thermodynamics and thermal transport with the help of machine learning

时间:2020-10-06
报告人:  Dr. Bingqing Cheng
Trinity College, the University of Cambridge

时间:  10月9日 周五 15:30-17:00

腾讯会议ID: 169 535 246 密码: 1009
会议链接: https://meeting.tencent.com/s/fqZ7dYtvoLPD

题目: Computing thermodynamics and thermal transport with the help of machine learning

摘要: A central goal of computational physics and chemistry is to predict material properties using first principles methods based on the fundamental laws of quantum mechanics. However,  the high computational costs of these methods typically prevent rigorous predictions of macroscopic quantities at finite temperatures, such as chemical potential, heat capacity and thermal conductivity.


In this talk, I will discuss how to enable such predictions by combining advanced statistical mechanics with data-driven machine learning interatomic potentials. As an example [1], for the omnipresent and technologically essential system of water, a first-principles thermodynamic description not only leads to excellent agreement with experiments, but also reveals the crucial role of nuclear quantum fluctuations in modulating the thermodynamic stabilities of different phases of water. As another example [2], we simulated the high pressure hydrogen system with converged system size and simulation length, and found, contrary to established beliefs, supercritical behaviour of liquid hydrogen above the melting line. Finally, I will talk about transport properties. Ref [3] proposed a method to compute the heat conductivities of liquid just from equilibrium molecular dynamics trajectories.



References:
[1] B. Cheng, E. A. Engel, J. Behler, C. Dellago, M. Ceriotti, Proceedings of the National
Academy of Sciences 116 (2019) 1110-1115.
[2] B. Cheng, G. Mazzola, C. J. Pickard, M. Ceriotti, Nature 585 (2020) 217–220.
[3] B. Cheng, D. Frenkel, Physical Review Letters 125 (2020) 30602.